Wednesday, October 28, 2015

Children’s Mobile Phone Use and Dosimetry

Children’s Mobile Phone Use and Dosimetry


Ae-Kyoung Lee,Jong-Hwa Kwon. Children’s Mobile Phone Use and Dosimetry. JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 15, NO. 3, 167-1172, JUL. 2015.
Abstract

Research results on possible effects caused by radiofrequency fields in children are limited because most of the studies published so far have focused on adults, rather than children. Mobile phone use is now widespread, even among younger children. If a biological risk due to mobile phone exposure is found, it might be greater in children because their bodies might be more sensitive to radiofrequency energy. The issue of a possible difference in sensitivity between adults and children begins with whether any difference exists physically in terms of electromagnetic absorption. This paper presents a review of recent publications on dosimetric comparisons between children and adults with respect to radiation from mobile phones. The issue of the health effects of mobile phone use is beyond the scope of the present review. Most of the dosimetry research on possible differences in power absorption between children and adults has been based on numerical modeling and analysis. The understanding of the results so far is presented and needed studies are described.
Open Access Paperhttp://bit.ly/1XyHxY6
Excerpts

... the Ministry of Science, ICT and Future Planning, Korea introduced the system grading mobile phone models based on their specific absorption rate (SAR) values [5]. This is construed as a governmental ‘precautionary approach’ to raised public concern since the World Health Organization/International Agency for Research on Cancer classified RF electromagnetic fields as group “2B” (possibly carcinogenic to humans) in 2011 [6].

The issue of whether children are more sensitive to electromagnetic fields emitted from mobile phones has been a hot topic among many researchers. However, only very
limited research has specifically addressed the issue of a possible difference in sensitivity between adults and children. 

One of key questions regarding this issue has been “Do children absorb more radiation power in their heads than adults do from mobile phones?” This is a simple question but very difficult to answer definitively because most dosimetric research compares the absorption of RF power in different individuals. In addition, the structures of the mobile phones examined differ among the various studies.

Nevertheless, some recent publications have examined possible age-related differences in exposure from RF radiation of mobile phones. These are reviewed in this paper to provide a better understanding of the current status of the relevant research.

To date, the reported variability in the peak SAR between adults and children seems to be attributed to individual differences in anatomy rather than age.

Accurate and reliable dosimetry and exposure assessment are key requirements of scientific studies on the health effects of electromagnetic fields. The antenna types and locations on commercial mobile phones have undergone a number of changes from those used in early research on health effects. Therefore, these changes need to be considered in future studies.

Until now, most of the computational simulations have been performed under specific conditions; for example, the standard phone positions against a head model and the maximum output power of a phone model. However, phone usage patterns due to high-speed technology could be quite different among children, adolescents, and adults. Exposure in real environments also needs to be assessed according to different usage patterns between different age groups.


--

Joel M. Moskowitz, Ph.D., Director
Center for Family and Community Health
School of Public Health
University of California, Berkeley

Electromagnetic Radiation Safety

Website:               http://www.saferemr.com
Facebook:            http://www.facebook.com/SaferEMR
News Releases:   http://pressroom.prlog.org/jmm716/
Twitter:                 @berkeleyprc

No comments:

Post a Comment