Tuesday, March 17, 2015

The Shocking Future of Brain Zapping

The Shocking Future of Brain Zapping

Posted on March 11, 2015 by Soren Dreier
Author: Ahmed - Elder 

It’s all in your head—those icky feelings, all that fog—and chemicals just aren’t that great at cutting through. That’s why scientists are experimenting with changing the brain game by tweaking its circuitry, rather than the chemical processes.

It might be a bit unnerving to us seasoned pill-poppers, but some believe that electrical currents could be the new wave in everything cerebral, from treating depression and addiction to enhancements that would enable those seeking that mental edge to learn new skills faster or remember more.

While pharmaceutical companies rake in nearly $90 billion a year from global sales of mental health meds, psychopharmacology research and development has slo wed to a crawl. With about 20 p ercent of Americans taking prescription medications for psychiatric and mood disorders, there’s a lot of room for growth.

That’s where “electroceuticals” come in.

“People find electricity being applied to treat depression very bizarre, but they find swallowing a pill to treat depression or anything else very natural,” said Marom Bikson, a professor of biomedical engineering and founder of a company that develops brain stimulation hardware.

Zapping your noggin may seem like the new wave of masochism rather than the cutting edge of medical tech, but the brain is essentially an electrical organ; altering the currents alters the signals. This has been the basis for psychopharmacology all along, but pills are slow, and expensive to produce. According to Bikson, our reliance on drugs is “more cultural than scientific.”

Using electrical currents to stimulate specific elements in the brain to alter their functions sounds like an idea direct from the future, but people have been therapeutically shocking their bodies and brains since we first harnessed electricity. One of those early adopters was the Roman Emperor Claudius, who pre ssed electric eels to his temples to ease headaches.

While electrical brain stimulation never went away, it fell out of favor as big pharma rose to the fore. In modern times, the thought of applying electricity to the brain has been met with all sorts of creepy feelings a la One Flew Over the Cuckoo’s Nest, but brain stimulation has evolved a lot since then. In 2000, Michael Nitsche and Walter Paulus, two German scientists, looked at how targe ting electricity to certain areas of the brain affects the functions of specific lobes, and brain stimulation as we know it began to take shape.

Now, some researchers believe this evolving science of what has come to be called “electroceuticals” might reinvent the entire field of medicine as we know it.

“What if electroceuticals could be as effective as drugs? What if electroceuticals could be one-hundredth as effective as drugs?” Bikson ponders. “It would mean that electroceuticals are going to change the world.”
***
Curious to see the new technology for ourselves, we stomp through a sludgy March afternoon to meet Bikson his City College of New York office. His research focuses on transcranial direct current stimulation (tCDS), a non-invasive procedure that involves placing positive and negative electrodes over the scalp to target specific parts of the brain and bring about different neurological effects.

Unlike the rambling, breathless lists of side effects at the end of Prozac commercials, there’s only one with tDCS: mild irritation on the skin where the electrical nodes are placed. To prove it, Bikson suggests we give it a go.

Eric volunteers, and is feeling just a touch nervous about the whole thing, although the biomedical engineer assures us nothing can go wrong. That sounds like precisely what a mad scientist might say.

Bikson adjusts a sponge-lined strap over Eric’s forehead and connects it to a beige box covered with dials and knobs. For this demo, Bikson placed the electrodes on Eric’s head to impact an area that relates to depression.

“This is the current and the light is flashing which means that we’re going up slowly,” Bikson starts to count off the current level until it reaches the initial target of one milliamp. “And we’re stimulating.”

He adjusts a sponge-lined strap over Eric’s forehead and connects it to a beige box covered with dials and knobs

He bumps up to “the typical high dose of tDCS” which, at a whopping two milliamps, isn’t actually much at all. For perspective, it would take 500 milliamps to power a 60 watt light bulb. Electroconvulsive therapy (ECT) is about a thousand times more intense than tDCS and floods the entire brain with currents, rather than just the parts of the brain that impact certain moods or cognitive abilities.

The electrodes send off a bit of a prickly heat sensation for the first few minutes, but Eric says he doesn’t feel much of a difference in terms of emotional state. Bikson says that’s to be expected with the first few rounds. Initially, the effects are limited, but over time, the impact accumulates and the effects last longer.

“There’s already technology available today that can, with limited discomfort or no discomfort, deliver much higher intensities than people are using. And there’s no theoretical—not even real—reason to think that this might be hazardous,” Bikson says. “We’re at baby aspirin levels right now. [Researchers] are going really slow with this stuff.”

So why not ramp up the experiments? Researchers have to be especially cautious because of how new the science of tDCS is—and perhaps to avoid the horrors that have been observed to coincide with ECT.

“Part of the reason why people are on the fence is because the effects are small, [but] of course they’re small. The dose has not increased in 15 years,” Bikson says.

But Bikson says that might be keeping them from making real headway—and from having the sort of impact on test subjects that would get the medical community engaged with this stuff.

One specific type of brain stimulation—and there are a lot of different types—is already being use d to treat Parkinson’s disease through a surgically implanted device that works much like a pacemaker. That same technology is also being used to help treat neurological disorders like epilepsy and even the after-effects of strokes. A different sort of stimulation that uses lasers shows promise in helping rats kick a coke habit.

Read More: Here

No comments:

Post a Comment